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Algebraic multigrid and incompressible fluid flow
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SUMMARY

This paper is concerned with the development of algebraic multigrid (AMG) solution methods for the
coupled vector–scalar fields of incompressible fluid flow. It addresses in particular the problems of unstable
smoothing and of maintaining good vector–scalar coupling in the AMG coarse-grid approximations. Two
different approaches have been adopted. The first is a direct approach based on a second-order discrete-
difference formulation in primitive variables. Here smoothing is stabilized using a minimum residual
control harness and velocity–pressure coupling is maintained by employing a special interpolation during
the construction of the inter-grid transfer operators. The second is an indirect approach that avoids the
coupling problem altogether by using a fourth-order discrete-difference formulation in a single scalar-field
variable, primitive variables being recovered in post-processing steps. In both approaches the discrete-
difference equations are for the steady-state limit (infinite time step) with a fully implicit treatment of
advection based on central differencing using uniform and non-uniform unstructured meshes. They are
solved by Picard iteration, the AMG solvers being used repeatedly for each linear approximation.

Both classical AMG (C-AMG) and smoothed-aggregation AMG (SA-AMG) are used. In the direct
approach, the SA-AMG solver (with inter-grid transfer operators based on mixed-order interpolation)
provides an almost mesh-independent convergence. In the indirect approach for uniform meshes, the
C-AMG solver (based on a Jacobi-relaxed interpolation) provides solutions with an optimum scaling of
the convergence rates. For non-uniform meshes this convergence becomes mesh dependent but the overall
solution cost increases relatively slowly with increasing mesh bandwidth. Copyright q 2006 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

Since the introduction of algebraic multigrid (AMG) over twenty years ago [1–4], it has become
an established method for the numerical solution of scalar, elliptic, partial differential equations,
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670 R. WEBSTER

especially for geometrically complex domains discretized using unstructured grids. For these
and other applications, it has provided a robust efficient mesh-independent convergence (see the
review by Stueben [5, 6]). Despite this, there have been applications where the method has not
provided the expected performance and this has prompted a resurgence of research into AMG
[7, 8]. One area which features in this research programme is the application of the method to
systems of partial differential equations, such as the coupled, vector–scalar, system of fluid velocity
and pressure as described by the Navier–Stokes equations. The second-order discrete-difference
formulation for this system (referred to here as PV2) is one of the systems to be investigated.
The application of C-AMG solvers to advection–diffusion problems [6] and to the fully coupled
PV2 systems (see below) can provide good convergence characteristics, however, the scaling of
the convergence can exhibit a mesh dependence. A coupled SA-AMG solver for PV2 systems
which exhibits almost mesh-independent scaling has been reported [9, 10], but not the treatment
of velocity–pressure coupling used. There seems to be no published work on the application of C-
AMG-type solvers to such systems. An alternative formulation of the equations for incompressible
fluid flow is the fourth-order, discrete stream-function formulation of Chang et al. [11]. At the
time of writing, there seem to be no reported applications of AMG to this system (here referred to
as SF4).

SA-AMG and C-AMG solutions for both PV2 and SF4 systems are investigated in this work
with a view to addressing the problem of mesh-dependent convergence, thought to be due to a
poor representation of the inter-field coupling in the coarse-grid approximations (CGAs). Before
proceeding, the background to the discrete stream-function (incompressible basis function) method
SF4, is outlined.

Staggered-grid methods on Cartesian meshes, as developed by Harlow and Welch [12], featured
prominently in the early development of numerical solution methods for incompressible fluid flow,
and are still in widespread use. The popularity of the approach is due largely to its numerical
stability and to the early recognition that it is globally conservative [13]. In recent years there has
been a revival of interest in staggered-grid discretization schemes, and in particular for extending
the method to general, unstructured, grids. This is partly due to recognized weaknesses in the
stability of collocated discretizations for unstructured grids (see, for example, Reference [10]),
and partly due to progress made in extending the staggered-grid method to unstructured triangular
meshes [14, 15]. Further impetus has been gained from the development of mimetic finite difference
methods [16–18], where the objective is a self-consistent, discrete, vector and tensor calculus that
‘mimics’ the vector and tensor calculus of the continuum [18]. A truly mimetic discretization
produces solutions that automatically satisfy the fundamental conservation laws both locally and
globally. The discrete-differential operators and their derived adjoint counterparts, the so-called
support operators, fall naturally on complementary staggered or dual domains, so that higher-order
compound operators may be formed naturally, the range of the first operator matching the domain
of the second [17]. A discrete vector calculus for tensor product grids, for example, produces
a staggered grid system similar to that of Harlow and Welch. Successful, conservative, mimetic
discretizations using the support operator approach have been achieved for general, logically
rectangular, grids in the fields of compressible hydrodynamics (see, for example, Reference [19])
and in electromagnetism [20].

Unfortunately, application of the mimetic approach to general unstructured grids can result in
implicit, non-local, support operators [17]. Only in special cases are the derived adjoints explicit
and local, e.g. orthogonal tensor product grids and Delaunay grids. This does not prevent solutions
for unstructured grids, since matrix-free Krylov methods can be employed. However, it would
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preclude the use of those iterative methods requiring an explicit system matrix, such as AMG
methods, and hence also the prospect of a mesh-independent convergence.

The unstructured, staggered-grid, scheme of Perot [21] is not formally derived using the support
operator method, but it does use dual grids and discrete vector operators that are constructed to
satisfy the vector identities of their continuum counterparts. It is also mimetic in the sense that it
has been shown to possess the required conservation properties. When applied to the Navier–Stokes
equations in primitive-variable form, the scheme has been shown to conserve mass, momentum
and energy and, when cast in rotational form, it has also been shown to conserve vorticity [21]. The
discrete equivalents of the vector operators Grad, Div, Curl and Rot may also be used to transform
and reduce the coupled system to a single-equation system for one, scalar, field variable, a discrete
stream-function [11]. The pressure/continuity equation is thereby eliminated, incompressibility
now being an intrinsic property of stream-function space. Moreover, the discrete stream-function
variable, the vector potential integrated along a cell edge, is a scalar for both 2D and 3D meshes.
The scheme does deliver an explicit system matrix, so AMG linear solvers may be used. However,
the penalty paid for the reduction is a higher, fourth-order, discrete-difference operator. This will
impact on the required inter-grid transfer operators and the CGAs of AMG.

2. DISCRETIZATIONS

Both PV2 [10, 22] and SF4 [11, 21] discretizations are derived using finite-volume methods on
unstructured finite-element meshes. As the enforcement of the relevant conservation laws for the
chosen control cells is a standard procedure it will not be described in any detail here. In both
cases (PV2 and SF4) it results in two matrix equations in three vector unknowns. The focus is on
the methods of closure, and hence on the final forms to be solved by AMG.

2.1. Primitive-variable formulation; PV2

Fluid velocity, v, and the pressure, p, are both defined at element vertices. The control cell is thus
the median dual enclosing each vertex. An additional fluid velocity within elements, ve, is defined
at element centres. Enforcing the conservation laws consistently for all control cells, using ve to
evaluate the fluxes for the control surfaces within elements, delivers a coupled system of equations:

Q(ve)v + Gnp= b

−Dve = 0
(1)

where Q is the advection–diffusion operator, D is the element-to-node divergence operator and b
is the momentum source for the cells. Note that v and ve are vectors of flow vectors and p is a
vector of scalar pressures. Gn is a node-to-node gradient operator derived from −DT assuming the
pressure interpolates linearly within elements. The entries in Q are fluxes: those in D and Gn are
vector areas. To close the system, the velocity, ve, needs to be expressed in terms of the nodal fluid
velocities and pressures, v and p. To facilitate this a second control cell is constructed within each
element and again the conservation laws consistently enforced (see, for example, Reference [10]).
This gives the additional equation set

Qe(ve)ve − F(ve)v − Gp=be (2)
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where Qe(ve) is the element-to-element advection–diffusion operator, F(ve) is the node-to-element
advection–diffusion operator and G is the node-to-element gradient operator (G=−DT); be is the
vector of momentum sources for elements. Since there is no direct coupling between elements
(only indirect coupling via nodes), Qe(ve) is diagonal. Taking linear approximations, by setting ve

in both Qe and F to the current value, the solution for an updated ve is straight forward:

ve = (Qe)−1{be + Fv + Gp} (3)

Substitution in (1) gives the coupled set

Q(ve)v + Gnp= b

Dnv + Bp= S
(4)

with S=−D(Qe)−1be,Dn =D(Qe)−1F, a node-to-node divergence operator and B=D(Qe)−1G=
−GT(Qe)−1G, a node-to-node Poisson-type operator with nearest-neighbour coupling. The system
should therefore be stable and should not normally be susceptible to checkerboard-type pressure
instabilities (however, see Reference [10]). It is solved by Picard iteration, in which repeatedly
updated, and again linearized, approximations are solved by AMG. The linearization is obtained
by setting ve to its current value from (3).

2.2. Stream-function formulation, SF4

In this case the control cell is the element itself. Face-normal flux, U, is defined at the face centres.
Pressure, p, is defined at the cell centre and a cell fluid velocity, vc, is also defined at the cell
centre. Thus, enforcing the conservation laws for the cells delivers the system

A(vc)vc + Gcp= b

−DU= 0
(5)

where A is the advection–diffusion operator for cells, Gc is the cell-to-cell gradient operator,
D is the face-to-cell divergence operator with non-zero entries of ±1, U is the vector of scalar
face-normal fluxes, p is the vector of scalar cell pressures and b is the vector of the cell sources
of momentum. To close this system it is necessary to express the cell fluid velocity, vc, in terms
of the face-normal fluxes, U. This is accomplished using Perot’s reconstruction, R, where

vc =RU (6)

where for just one cell

vc =
i=3∑
i=1

riUi

Vc
(7)

where ri is the centre-cell to centre-face vector (index i) and Vc is the cell volume. Combining
(7) with a linearized form of momentum equation in (5) gives

[A(vc)R]U + Gcp= b

−DU= 0
(8)
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To complete this system the momentum equations are averaged by integration to the faces of cells
using the transpose of R,

[RTAR]U + Gp=RTb

−DU= 0
(9)

where G, a revised gradient operator, satisfies G=RTGc = −DT. This discrete coupled system,
which contains the boundary conditions, may be reduced to a single system using one further
transformation based on the discrete equivalents of Curl and Rot, C and CT, respectively. The cell
edge-to-face Curl operator, C, relates the face-normal fluxes, U, to integrated stream-functions, s,
for bounding edges. Thus, for each edge a scalar integrated stream-function, s, is defined as

s=
∫
edge
W • dl (10)

for vector stream-function W. The global discrete Curl operator, C, relates the vector of scalar
face-normal fluxes U to the vector of scalar discrete stream-functions, s, i.e.

U=Cs (11)

C and CT, like G and D contain non-zero entries of ±1. They are truly mimetic in that they
satisfy the discrete equivalents of the well-known vector identities, DC= 0 and CTG= 0, see
Reference [11]. Substituting (11) into (9) and applying CT gives the transformed system. However,
the off-diagonal blocks contain the above identities, and hence the system reduces to a single block

[(RC)TA(vc)RC]s= (RC)Tb (12)

The transformed matrix shares the numerical properties of A [11]. It is the linearized form that is
solved by AMG. From the solution, s, face fluxes, U, are recovered using (11) and cell velocities,
vc, using (6). The linearized form is obtained by using previous iterate values for vc in A(vc).
Note that the entries in s are scalars for both 2D and 3D.

3. ALGEBRAIC MULTIGRID SOLVERS

AMG methods are founded on the two basic multigrid principles of error smoothing and coarse-
grid correction. Short-range (high wave-number) errors may be smoothed by simple relaxation and
long-range (low wave-number) errors can be well represented, and therefore corrected from coarser
grids. By careful and complementary enforcement of these two principles on a full hierarchy of
successively coarser grids, full bandwidth corrections may be assembled and applied in an iterative
process to achieve efficient solutions at a mesh-independent convergence rate. In AMG (in contrast
to geometric multigrid, GMG) the simplest possible smoothing is adopted and the coarsening then
constructed so as to complement that smoothing using a fully automatic, algebraic, procedure
based on information contained entirely in the entries of the system matrix.

Both the PV2 and the SF4 formulations present significant difficulties when trying to satisfy
these two basic multigrid principles. In the case of PV2, the numerical properties of the coupled
system matrix can compromise the stability of simple relaxation smoothing. Also, the coarsening
that is based on the intra-field coupling (off-diagonal entries of the diagonal blocks) may not result
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in the best representation of pressure–velocity coupling (entries in the off-diagonal blocks) of the
CGA. The latter problem is avoided in the single-block SF4 formulation, but the system matrix
in this case presents its own difficulties. It represents a higher, fourth-order, discrete-difference
operator, and therefore demands higher-order inter-grid transfer operators.

Before describing the methods adopted for addressing these difficulties, the two AMG methods
used will be outlined. Both are based on the Galerkin CGA, but distinguished by different coarsening
schemes, the aggregation-based scheme of Vanek et al. [23] and the classic C–F partitioning scheme
of Ruge and Stueben [4]. Apart from these differences the solvers are identical. The use of the
labels SA-AMG and C-AMG solvers should not be taken to mean that they are representative
of all those in the general classifications of smoothed-aggregation and classical AMG. It should
also be noted at this point, that in previously reported work [9], it was wrongly implied that the
SA-AMG solver was deficient when applied to the cases of low Reynolds number flow on highly
stretched grids. It has since been found that this implication is false. Poor performance in those
cases was due to a failure in the stability of the discretization itself and not due to any inherent
deficiency in SA-AMG for coupled systems [10].

Both solvers were constructed following the guidelines set out by the originators, Vanek
et al. in the case of SA-AMG [23], Ruge, Stueben, McCormick and others in the case of
C-AMG [4, 6, 7]. Since it is the application of the two AMG approaches to the PV2 formula-
tion and the SF4 formulation of the flow equations that is particular interest here, only those
aspects are described that are considered especially important in these applications. Other aspects
of the methodology and the algorithms are well documented in current research papers [7] and in
books [6].

In both applications, the formation of the inter-grid transfer operators, and hence the CGA is
particularly important to the efficiency of the solution, and it is in this area that attention is first
focussed. Much of the current research on AMG is focussed in this area also [24]. However,
attention then turns to the method of pre-smoothing and post-smoothing the transferred residuals
and corrections, which is particularly important in the case of the coupled system [9, 22].

3.1. Coarsening for SA-AMG

The SA-AMG solver for coupled fields follows the ‘unknown’ approach of Ruge and Stueben [4]
where for each unknown, regardless of field identity, we associate one algebraic grid point. Thus,
for a collocated mesh of N vertices there may be as many as (d + 1) × N fine-grid points for a
primitive-variable formulation, where d is the number of spatial dimensions. In SA-AMG the grid
points are decomposed into disjoint aggregates such that points within any one aggregate share
both the same field and a common, strongly coupled, neighbourhood within that field. A coupling,
ai j , between two grid points, i and j, is strong if

|ai, j |>�st
√
aii a j j (13)

where �st is a predefined strong coupling parameter. For every fine-grid point there is just one
coarse-grid point, and this defines a zero-order interpolation/restriction operator, I, with positive
non-zero entries of unity. Because coarse-grid points have the same field identity as their associated
fine-grid aggregates, the matrix has block diagonal structure. Note that the coarsening rate for each
set of field equations may differ. To improve the CGA, the blocks of I are smoothed using Jacobi
relaxation. This enhances the interpolation, and hence the consistency of the CGA. Depending on
the quality of the aggregation, smoothing should produce an approximate first-order interpolation.
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The coarse-grid generation algorithm used is given in Reference [9]; the simpler of the two
aggregation algorithms presented there is the one actually used here.

3.2. Coarsening for C-AMG

The C-AMG solver also follows the unknown approach of Ruge and Stueben. Coarse grids are
derived from a partitioning of points, �h , on a fine-grid level, h, into two disjoint sub-sets, Ch and
Fh , where

�h =Ch ∪ Fh

and where the coarse-grid points for level, H, are set to be �H =Ch . The partitioning is made
using a two-pass scheme, the first pass following Stueben’s algorithm [6], the second following
that of McCormick [25]. They are controlled by the two heuristics:

1. For every F point, i, every point, j, directly connected to i that strongly influences i should
be in set C , or should strongly depend on at least one point in C .

2. The set C should be a maximal sub-set such that no point in C depends strongly on another
C point.

The first heuristic is enforced in the interests of a good interpolation; the second is used as a guide
in order to achieve a significant dilution of points for the coarse grid, thereby constraining the
overall complexity of the CGA. In this case the strong influences and dependencies are defined in
terms of the strong coupling parameter, �st, as

−ai j��st max
k �=i

(−aik) (14)

where, again, ai j is the coupling strength between points i and j.
Having established the coarse grid, level H, it is then necessary to define the interpolation,

I hH , to level h. The approach adopted here follows largely that described by Stueben [6] for
essentially positive matrices where any positive off-diagonal entries are considered weak coupling.
No advantage was gained by allowing for the separate treatment strong positive coupling. From
this point the level superscripts are taken as understood in the interests of simplicity. For the C
points on � the interpolation is a simple injection. For the F points, i, it is necessary to determine
interpolation weights, �i j , j ∈C . Those modes of the error spectrum that require correction from
the coarse grids, are those which are seen as smooth by Gauss–Seidel/Jacobi relaxation operators
on the fine grid, that is, those for which residuals are small. If e represents the error vector, then
for an F point, i, we then have

aii ei + ∑
j∈Ni

ai j e j ≈ 0 (15)

where the set, Ni , represents neighbours of i. If we define Ci and Fi as

Ci = Ni ∩C; Fi = Ni ∩ F; Ni =Ci ∪ Fi

then following Stueben [3], Equation (15) may be approximated by

âi i ei + �
∑
j∈Ni

ai j e j = 0, with âi i = aii + ∑
j /∈Pi

ai j , � =
∑

j∈Ni
ai j∑

j∈Pi ai j
(16)
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where Pi ⊂Ci a chosen selection of C neighbours for interpolation. This gives a direct interpolation

ei = ∑
k∈Pi

�ikek with �ik =−�
aik
âii

(17)

The choice Pi is usually those members of Ci that are strongly negatively coupled to i. This
approximation is insufficient for some of the applications considered here. Better approximations
may be obtained by replacing all e j , j ∈ Fi in (15) with

e j = ∑
k∈N j

a jkek
a j j

(18)

augmenting, thereby, the set of C-points for interpolation. Following Stueben [6], this will be
referred to as standard interpolation. Allowance for a further extension of the interpolation is also
made by including a further layer of contributing points so that

e j = ∑
k∈C j

(
a jkek
a j j

)
+ ∑

k∈Fj

{
a jk

∑
q∈Nk

[
akqeq
a j j akk

]}
(19)

This will be referred to as Jacobi-relaxed interpolation. The extra layer need only be included if
the initial F–F coupling is sufficiently strong. Following these substitutions, (18), (19) or both,
collecting and summing coefficients with common indices delivers a new equation for ei

âii ei + ∑
j∈N̂i

âi j e j ≈ 0, N̂ ={ j �= i : âi j �= 0} (20)

which may be used, just as was (15), to obtain a new interpolation.

ei = ∑
k∈Pi

�ikek with �ik =−�
âik
âi i

(21)

The choice for Pi has been found to be particularly important for solutions of the SF4 formulation
of the flow equations (Section 4.3.3).

Clearly, the interpolation can become quite complex with these extensions of the direct inter-
polation. To prevent excessive and cost ineffective work, Stueben’s recommendation of truncating
the interpolation is adopted, where all entries that are smaller than the largest by a filter factor,
�tr, are ignored, and all remaining entries re-scaled to conserve the row sum [6].

C-AMG will be applied to both coupled field formulations, PV2, and scalar field formula-
tions SF4.

3.3. Velocity–pressure coupling in the CGA

The problem of velocity–pressure coupling has been a recurrent theme throughout the development
of discrete approximations for incompressible fluid flow. The two established methods for ensuring
good coupling, and hence stable discretizations, are the mixed (staggered/dual) grid approaches of
finite-volume schemes and the mixed-interpolation approaches of the finite-element method. The
SF4 scheme of Section 2.2 is a staggered/dual grid scheme and the PV2 scheme of Section 2.1
may also be viewed as a special form of dual grid scheme.

For AMG, it is not clear if the quality of the velocity–pressure coupling in the CGAs will
automatically follow that for the fine grid. As already mentioned, this is because the equations for
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those grids are algebraically determined entirely from consideration of the intra-field couplings
(off-diagonal entries of diagonal blocks of the system matrix) without any regard for the resulting
inter-field couplings (entries in the off-diagonal blocks on the coarse-grid system matrix). There-
fore, with a view to mitigating any possible degradation of the inter-field coupling during that
process, we borrow the idea of mixed interpolation from the finite-element approach [26]. Thus,
we allow for mixed-order interpolations in the formation of the inter-grid transfer operators for the
application of AMG to the coupled vector–scalar scheme PV2. The notations SA-AMG(nv, ns)
and C-AMG(nv, ns) will be adopted, where nv and ns are the nominal orders of the interpola-
tions for the vector and scalar variables, respectively. The order is only ‘nominal’ because, as
used in its normal sense, it cannot be guaranteed by using a purely algebraic coarsening process.
Thus, in the case of SA-AMG(nv, ns), nv = 1, ns = 0, signifies the mixed interpolation resulting
from a smoothed-aggregation for velocity and an unsmoothed-aggregation for pressure. Similarly,
nv = 1, ns = 1, signifies the use of smoothed-aggregation for both velocity and pressure. In the
case of C-AMG, nv = 1, ns = 1, also signifies an equal-order interpolation but in this case with
standard interpolation being used for both velocity and pressure. The effectiveness of the strategy
will be investigated by numerical experiments (Section 3).

In the case of the SF4 formulation, the coupling problem is avoided completely, since in-
compressibility is an intrinsic property of the scalar stream-function space and the CGAs are
each represented by a single-block matrix equation. For consistency, notations SA-AMG(ns) and
C-AMG(ns) will be used. For these fourth-order difference equations, the interpolation should,
strictly, be higher than first order [27]. In this context the effectiveness of the Jacobi-relaxed
interpolation will be tested by numerical experiment in Section 3.

3.4. Stabilized smoothing

The system matrices for both PV2 and SF4 formulations are not M-matrices. Even diagonal blocks
of the coupled-block matrix are not M-matrices. This would normally compromise the stability of
simple relaxation smoothing, and hence one of the two fundamental principles underpinning the
AMG method as outlined above. To overcome this difficulty, a stabilizer in the form of a minimum
residual (GCR) control harness is used to drive the smoother, which may then take the usual simple
form of either Jacobi or Gauss–Seidel relaxation. This is particularly important for the coupled
system where the multiple smoother sweeps are normally required for optimum efficiency.

In addition to the normal V -cycle smoothing schedule, provision is made for the more complex
F-cycle schedule that provides for a greater investment of multigrid processing for the coarser
grids. Algorithms may be found in Reference [9]. The notation F(�2, �1) will be used to qualify
the solver, for example, SA-AMG(1, 0)F(3, 0).

3.5. Acceleration

Recognizing that the CGAs in AMG may not always be sufficient, provision has been made
for accelerators, GCR, GMRES, BICGSTAB, PCG, etc. Of these GCR has been chosen because
a one-to-one correspondence between GCR iterations and AMG F-cycles is convenient for the
comparison and presentation of results. The accelerator is only used where it improves efficiency.
Where it is used, the qualifier GCR is appended in the notation, e.g. C-AMG(1)F(1, 0)GCR, for
the case of GCR accelerated C-AMG, with the F(1, 0) cycle, when applied to the scalar field SF4
formulation of the problem.
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3.6. Preconditioning

The SF4 system matrix was scaled by binormalization using the method of Livne and Golub [28].
This is a type of preconditioning in which rows and columns are scaled in the Euclidean norm. The
scaled matrix is better suited to AMG [29] and has improved numerical and stability properties.

4. NUMERICAL EXPERIMENTS

4.1. Test problem

To meet the requirements of multi-dimensional flow, the driven cavity is chosen as the test
problem; just two spatial dimensions to maximize the range of available mesh bandwidth within
the constraints of limited computing resources. A Reynolds number of 100 is chosen, high enough
to provide an advection dominated flow, yet low enough not to compromise the lower range
of available mesh resolution. The mesh resolving power, Q, needs to satisfy Q>Re1/2 in order
for the boundary layers to be resolved. Since the investigation is concerned with the scaling of
performance with mesh size, the discrete approximation itself should not contain any avoidable
mesh dependence. For this reason, upwind differencing of advection terms is not used; the false
diffusion associated with it is of order uLQ−1, where u is the magnitude of the flow and L a
characteristic length scale for the problem. Hence, central differencing is adopted despite the fact
that this makes the problem numerically more difficult, and despite the fact that this will incur a
mesh-dependent, dispersive, truncation error which scales as Q−2. However, the dispersion should
not significantly distort the scaling results over the range of mesh sizes to be studied, except
possibly for extremely coarse meshes, Q ∼ 10, which will be avoided.

4.2. Meshes

As emphasized by Perot [21], methods based on unstructured, staggered/dual, grids have numerous
attractive mathematical properties but high-order accuracy is not one of them. For this reason
we do not pursue the investigation of highly distorted meshes where the accuracy of the SF4
discretization is expected to be poor. Thus, meshes expected to provide second-order accuracy
are the main choice, for example, uniform meshes. However, meshes expected to give first-order
accuracy are also examined. These include non-uniform meshes and random meshes, which involve
moderate distortions of cells (Figure 1). This prudence in mesh choice is also motivated by the
recognition that poor AMG convergence may sometimes be connected more with deficiencies in the
discretization rather than with deficiencies in the AMG method itself [7, 10]. For SA-AMG(1, 0)
solutions on meshes with extreme distortion see Reference [10].

4.2.1. Uniform meshes. These take the form of Delaunay triangulations. They are optimized by
removing all nodes with low-order connectivity (connectivity, �, being defined as the number of
intersecting edges). Thus, nodes with �<5 are removed as are quintuplet pairs, giving connectivities
for all nodes within the range, 5���7.

4.2.2. Random meshes. Random meshes are generated from uniform meshes by perturbing the
nodal positions of the uniform meshes randomly within specified limits, e.g. 10 and 25%.
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Figure 1. Examples of the three basic mesh types: uniform mesh, random mesh and smoothly graded
non-uniform mesh. The examples are for the coarsest meshes used, mean bandwidth of Q ∼ 16.

4.2.3. Non-uniformmeshes. The non-uniformmeshes are Delaunay triangulations smoothly graded
with a four-fold refinement from the bottom to the top surface of the cavity. Again they are opti-
mized so that connectivities fall within the range, 5���7.

4.2.4. Mesh bandwidth. The scaling of solver performance is of particular importance in this
investigation so some relevant measure of the mesh ‘size’ is required. To this end a nominal mesh
bandwidth, Q, is defined to be synonymous with resolving power as

Q = L

�

for a characteristic nodal displacement (or element size), �. For the non-uniform meshes and
random meshes, an average value for � is used to give a nominal average bandwidth.

4.3. Solver parameters

4.3.1. Smoothing. The GCR-controlled Jacobi smoother (�2 = 1; �1 = 0) was found to be the most
efficient for the SF4 formulation. It has also been used for the PV2 formulation but in this case
with the schedule (�2 = 3; �1 = 0).

4.3.2. Coarsening. For C-AMG, �st, was set at 0.25 and �tr at 0.05. However, when C-AMG was
applied to the coupled PV2 formulation of the problem, some tuning of �st was necessary. To
obtain a more reliable convergence over the full range of mesh sizes, the following grid-dependent
values, �gst, were used

�gst = �st

(
1

2

)g−1

; 1�g�G (22)

g is the grid level and G the level of the coarsest grid. However, a few instances of stagnation
were still observed, especially for non-uniform meshes.

SA-AMG was robust. No tuning was necessary. Performance was not sensitive to mesh unifor-
mity: Nor was it sensitive to the precise values of either the strong coupling parameter, �st, or the
matrix truncation parameter, �tr; they were set at �st = �tr = 0.08.
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4.3.3. Interpolation. For SA-AMG, the operator smoothing, where implemented, is applied to
both restriction and prolongation in the form of a Jacobi smoothing with relaxation parameter 2/3.

For C-AMG Jacobi-relaxed interpolation (21), Pi is chosen to be the full set of coarse neighbours
regardless of the strength of the connections to point, i, Pi =Ci = Ni ∩C .

4.4. Solver performance measures

4.4.1. Convergence. This investigation is primarily concerned with the performance of AMG
as a linear solver for the iterative solution of non-linear equations. The convergence factor of
interest is thus the residual reduction factors for AMG, not those for the non-linear solver. Non-
linear solver convergence factors for this and other test problems for SA-AMG may be found in
References [9, 22]. Here an overall average, �, is used to measure the quality of AMG performance,

�=
[

�∏
1

{(
�∏
1

�n
)1/�

}]1/�

, �n = ‖rn‖2
‖rn−1‖2

where rn is the residual for iteration, n, �n is the corresponding reduction factor, � is the number
of linear iterations to achieve a specified residual tolerance level and � is the number of non-linear
iterations required to achieve a specified tolerance in the norm of the non-linear corrections. The
tolerance for the linear solver is a 107 reduction in the residual norm. The tolerance for the non-
linear solver is a 106 reduction in the change-norm. Of particular interest, in the assessment of the
quality of the AMG solver, is the scaling of � with the mesh bandwidth Q.

4.4.2. Complexity. The overall scaling of AMG depends on the scaling of its complexity. Good
convergence scaling would be of little value if it were gained at the cost of a mesh-dependent
complexity. The algebraic complexity, CA, is defined as the ratio of the total number of matrix
entries for the complete set of, G, grids to the number of entries for the fine grid. Grid complexity,
Cg , is defined as the ratio of the total number of equations for the complete set of, G, grids to the
number of equations for the fine grid.

4.4.3. Efficiency. Attention will be focussed on the comparative efficiency and its scaling with
problem size, N . SA-AMG(1, 0)F(3, 0) is chosen to provide the reference solutions. Computing
times, 	, are discussed in terms of the scaling exponent, �, where it is assumed that 	 ∼ N �.

4.5. Results for the coupled scalar–vector field: PV2

4.5.1. Convergence factors. The average convergence factors for the PV2 formulation on uniform
unstructured meshes are shown in Figure 2. Those for the non-uniform mesh are given in Figure 3.

Consider first the equal-order interpolation results, SA-AMG(1, 1)F(3, 0) and C-AMG(1, 1)
F(3, 0). The convergence factors are clearly Q-dependent, with step increases in � at mesh band-
widths of Q = 32/40 and at Q = 96/100, despite the fact that the order of the interpolations more
than satisfies the requirement for a second-order discrete-difference system. The steps correspond
to the incremental increases in the total number of coarse grids, G. This behaviour seems to
be consistent with a reduction in the quality of the inter-field coupling at each grid coarsening
(as suggested in Section 3.3). The larger the number of coarsening operations the poorer the quality
of the overall representation of velocity–pressure coupling in the CGA. Observe that between the
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Figure 2. Scaling of average convergence factors for C-AMG and SA-AMG solvers; uniform meshes.
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steps the convergence factors do display, more or less, the normal Q-independent behaviour to be
expected for first-order interpolations.

Note that the step behaviour is a characteristic of both solvers for both mesh types. Convergence
factors for C-AMG tend to be slightly better than those for SA-AMG but are more erratic,
especially for the non-uniform meshes (Figure 3). This is consistent with the fragility of the
C-AMG convergence for this coupled field problem and the need for tuning of, �st, as discussed in
Section 4.3.2. However, even with the tuning, �gst, some instances of stagnation still occur, hence
the high points in the scatter for C-AMG. No tuning was required for SA-AMG; convergence in
this case was robust and insensitive to the precise value of �st.

Consider now the mixed-order interpolations, SA-AMG(1, 0)F(3, 0) in Figures 2 and 3. In
both cases these exhibit a much better, almost Q-independent, scaling without any obvious steps.
This is consistent with the anticipated improvement in velocity–pressure coupling for mixed-order
interpolations, as discussed in Section 3.3.

Mixed-order interpolation does indeed appear to maintain better inter-field coupling despite the
fact that velocity and pressure systems are coarsened more or less independently without any
consideration for inter-field coupling.

4.5.2. Algebraic complexity. In addition to giving a better scaling, SA-AMG(1, 0) has also the
lowest complexity (Figure 4). That for C-AMG(1, 1) is up to 40% higher while that for SA-
AMG(1, 1) is up to 10% higher. Moreover, for SA-AMG, there is little difference between the
results for uniform and non-uniform meshes (both equal- and unequal-order interpolation). How-
ever, the complexity for C-AMG is about 5% larger on non-uniform meshes. Nevertheless, both
solvers scale well. Complexity will not compromise the overall scaling of computing time with
mesh size.
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4.5.3. Relative efficiency. In view of the superiority of SA-AMG(1, 0) for both convergence factors
and complexity, its overall performance is better than that for the other solvers both in terms of
absolute efficiency and in terms of the scaling of computing time with problem size. This is clearly
illustrated in Figure 5, where the cost of SA-AMG(1, 1) and C-AMG(1, 1) relative to that for SA-
AMG(1, 0) is plotted as a function of mesh bandwidth. The form of the scaling obviously reflects
that of the convergence factors. However, note that even for coarse meshes where C-AMG(1, 1)
convergence factors are much better than those for SA-AMG(1, 0) the cost is no better (relative
cost ∼ 1.0) because of its higher complexity.

In conclusion, SA-AMG(1, 0), offers almost mesh-independent solutions for the coupled
velocity–pressure formulation of the Navier–Stokes equations, PV2; the scaling exponent for
computing time, � = 1.09, is close to the optimum, � = 1.0.

4.6. Results for the scalar field: SF4

For this formulation we have just one matrix equation (12) for the, discrete stream-function,
s. Primitive variables, U, vc and p are recovered in post-processing steps using Equations (11)
and (6). The cost of both this post-processing and the pre-processing required to form (12), is
included in the following assessments. Although it is a single-block matrix equation, it presents a
more difficult challenge for the AMG solvers since the matrix represents a fourth-order discrete-
difference operator, whereas, the solvers above were formulated for just second-order difference
equations. Strictly, as noted earlier, a higher order interpolation is required for at least one of
the inter-grid transfer operators. Although there has been some research on SA-AMG methods
for fourth-order, discrete-difference, equations [23], the solver produced was not based entirely
on information contained in the system matrix. Research has intensified in recent years on the
development of an adaptive SA-AMG, sometimes designated �SA [30], which is based entirely
on information contained in the matrix, however, it is not clear at this stage if this will deliver
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a practical linear solver for these non-linear fluid flow problems. Here, therefore, the above SA-
AMG and C-AMG solvers are applied to the problem in the knowledge that performance is likely
to fall short of the ideal.

4.6.1. Convergence factors. Convergence factors for C-AMG(1)F(1, 0) and SA-AMG(1)F(3, 0)
GCR solvers for uniform, unstructured, meshes are presented in Figure 6.

Where applied, the smoothing, F(3, 0), and the accelerator, GCR, have been used to optimize
performance. The scaling for SA-AMG(1)F(3, 0)GCR is mesh-dependent, as expected. Note,
however, that the scaling of C-AMG(1)F(1, 0) is better. Within the point-to-point scatter, the
convergence is independent of the mesh bandwidth, Q. This, somewhat surprising, optimum scaling
is only realized, however, when the Jacobi-relaxed interpolation is used. If direct interpolation or
standard interpolation is used, then the convergence factors are mesh dependent, just like those for
SA-AMG(1)F(3, 0)GCR. This optimum scaling is also lost on non-uniform meshes; see Figure
7, which shows the scaling of the average convergence factors for C-AMG(1)F(1, 0)GCR on
random and smoothly graded non-uniform meshes (results for uniform mesh are included for
comparison).

For the random meshes, the strength of the mesh dependence is directly related to the degree to
which the mesh is perturbed from the uniform (note that angles in some elements exceed 120◦ on
the most perturbed mesh). Even for the smoothly graded, non-uniform (Delaunay) mesh, where the
4:1 refinement is spread evenly across the entire domain, the mesh dependence is still significant.
It would seem, therefore, that the Jacobi-relaxed interpolation is just sufficient to deliver optimum
scaling for a uniform mesh but is unable to provide the same quality of CGA if the meshes depart
even a small amount from that uniformity.

Note that it is only for such uniform meshes that the SF4 formulation is able to deliver a second-
order accurate solution. For non-uniform meshes the accuracy degrades to first order, whereas the
accuracy for the PV2 formulation is second-order for both uniform and non-uniform meshes.
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4.6.2. Algebraic complexity. The algebraic complexities for C-AMG(1) show some mesh depen-
dence at low mesh bandwidths, but improve as bandwidth increases (Figure 8, compare with results
for the PV2 formulation, Figure 4).

The smoothly graded, non-uniform mesh has a slightly lower complexity than those for the
uniform and random meshes but the asymptotic values are in the same range as for C-AMG on
the PV2 formulation. All are much larger than the complexities for SA-AMG.
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4.6.3. Comparative efficiency. The scaling of the relative costs of C-AMG(1)F(1, 0) and of
C-AMG(1)F(1, 0)GCR, for uniform and non-uniform meshes, respectively, are shown in
Figure 9.

Clearly, they are more costly than the reference solutions by a factor of between 1.4 and 2.2
over the range of mesh bandwidth. This may seem somewhat surprising in view of the fact that
the SF4 system is a single-block matrix, whereas the coupled PV2 system contains 7 non-zero
blocks (10 non-zero blocks in 3D). However, it is to be remembered that assembling the SF4
block requires the successive transformation of two coupled multi-block systems. These are the
cell-based, 7-block system for vc and p, each approximately twice as large, and the cell-face
based 4-block system for U and p, the U-blocks being roughly three times as large. Also, the
complexity of C-AMG is larger, by about 50%, than that for SA-AMG. These additional SF4 costs
only increase linearly with problem size, so they do not compromise the overall solver scaling.
In fact, they weaken the overall effective mesh-dependence, since solution phase costs are then
a smaller fraction of the total cost. The larger complexity of C-AMG is also only weakly mesh
dependent, so this too effectively reduces the mesh dependence. It is for this reason that the scaling
for non-uniform meshes, case ‘B’ in Figure 9, seems better than expected (bearing in mind the
scaling for the convergence factors, Figure 7). For a 64-fold increase in problem size there is only
a 60% increase in relative cost.

So even for non-uniform meshes, C-AMG (with Jacobi-relaxed interpolation) has relatively weak
mesh dependence. The scaling exponent, for this range of mesh bandwidth, is � = 1.2. C-AMG
can therefore be used as a practical solver for such first-order accurate SF4 formulations.

For uniform meshes on the other hand, where the SF4 formulation is second-order accurate,
case ‘A’ in Figure 9, the relative cost of C-AMG is mesh independent on average. This suggests
that in terms of the absolute cost, the mesh dependence is similar to that for the reference. The
scaling exponent, �, is estimated to be � = 1.06 (if the coarser grid results are discounted) which
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compares with � = 1.09 for SA-AMG(1, 0). Where SA-AMG(1, 0) is weakly mesh dependent in
its convergence (Figure 2), C-AMG(1) is weakly mesh dependent in its complexity (Figure 8).

4.7. General comments

4.7.1. Coupled SA-AMG solver for the PV2 formulation. The two important factors in achiev-
ing almost Q-independent convergence for the coupled SA-AMG solver are the stabilization of
smoothing using a GCR control harness and the maintenance of good inter-field coupling in the
CGAs using mixed-order interpolation. This then makes the overall performance of the solver
similar to that reported for single-field problems [9].

4.7.2. C-AMG solver for the SF4 formulation. The point-to-point variations in the C-AMG results
for the SF4 formulation on (quasi) uniform unstructured meshes (Figures 6 and 9) are partly
due to the sensitivity of the convergence to mesh uniformity. They may be reduced by strictly
enforcing uniformity of cell geometry, e.g. by triangulating a Cartesian mesh. This is illustrated in
Figure 10, which shows that in this case the scatter is much reduced and comparable with that for
the SA-AMG results for PV2.

It should be remembered that this particular implementation of the SF4 formulation represents a
difficult challenge for iterative solvers. Single-level solvers, with simple preconditioning, struggle
to deliver convergence, especially on the larger meshes. To illustrate this (and to put the mesh
dependencies into perspective), Figure 11 shows the relative cost of Jacobi-preconditioned GCR
and BiCGSTAB-based solvers for the SF4 system on uniform unstructured meshes. Since in both
cases, the number of linear-solver iterations increases roughly in proportion to ∼ Q2, the overall
relative cost scales as ∼ Q
, 
�2. In the case of BiCGSTAB, exponent, 
, is not much larger
than 2. However, in the case of GCR, the dimension of the Krylov subspace increases with the

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

16 32 48 64 80 96 112 128

A
ve

ra
ge

 c
on

ve
rg

en
ce

 f
ac

to
r

Mesh bandwidth, Q.

SA-AMG: PV2 C-AMG: SF4

Figure 10. The scaling of average convergence factors for solvers SA-AMG(1, 0)F(3, 0)
and C-AMG(1)F(1, 0) applied to the PV2 and SF4 formulations of the driven cavity test

problem on uniform Cartesian meshes.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:669–690
DOI: 10.1002/fld



688 R. WEBSTER

0

5

10

15

20

25

30

35

16 32 48 64 80 96 112 128

R
e
la

ti
v
e
 c

o
s
t

Mesh bandwidth, Q

A: C-AMG B: C-AMG

C: GCR D: BiCGSTAB

Figure 11. The scaling of relative costs: Case ‘A’: C-AMG(1)F(1, 0); uniform unstructured meshes.
Case ‘B’: C-AMG(1)F(1, 0)GCR; smoothly graded, non-uniform, unstructured meshes. Case ‘C’: GCR;
uniform unstructured meshes. Case ‘D’: BiCGSTAB; uniform unstructured meshes. The reference is

SA-AMG(1, 0)F(3, 0) for PV2 on uniform unstructured meshes.

iteration count so the exponent is closer to 4. The Q dependence of the C-AMG-based solvers is
clearly weak in comparison, for both uniform and non-uniform meshes.

Note in Figure 11 that the mesh dependence for GCR and BiCGSTAB solvers appears less
strong at the lower mesh bandwidths. This is because the relative cost of the set-up phase, which
is constant, is here a more significant fraction of the total cost. Furthermore, dispersion errors,
associated with the central differencing of advection terms, are larger on coarser meshes and these
slow up the convergence of the outer, non-linear, iterations. The latter effect is most pronounced
at Q = 20 where the total relative cost is actually higher than at Q = 24. The performance of both
the C-AMG-based solvers seems less sensitive to the effects of this dispersion error.

Krylov methods can be made more viable for SF4 formulations, by improving preconditioning,
and by removing the implicit treatment of advection and introducing under-relaxation in the form of
finite time steps, as in Reference [11]. The latter modifications make the iteration matrix symmetric
and diagonally dominant and also permit PCG solution options. Of course, they would also make
for easier AMG solutions.

To improve the scaling of C-AMG(1) for non-uniform meshes, an improved interpolation is
required. Some of the current research activities on adaptive AMG [24] may provide this. The cost
penalty of the adaptive phase would need to be mesh independent, of course. Also, for the benefits
to be manifest within the range of accessible mesh bandwidth the additional cost must not be too
large. In the mean time, the above results show that the current approach gives solutions at a cost
that is not prohibitive.
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4.7.3. Tolerances. Convergence criteria chosen are not representative of those that might be used
in real practical applications. For example, a 107 reduction in the residual norm for each linear
approximation is probably excessive. It has been adopted here simply to ensure that a stagnated
linear-solver convergence would not pass unnoticed. Less stringent reductions (of say 102–103)
usually suffice in practice to ensure an efficient, overall, convergence to any desired level (above
that dictated by finite machine arithmetic).

4.7.4. Other test cases. Results presented are for a test case chosen purely for presentational
purposes. The SA-AMG mixed-interpolation approach has in fact been applied to many test
problems, a wide range of flow conditions (from the Stokes limit to Re= 3200) and for a wide
range of meshes, some with extreme distortion (highly stretched grids with element aspect ratios
exceeding 300). In fact, results published in a previous paper, concerned with other matters, were
obtained with SA-AMG(1, 0) and the PV2 formulation [10].

4.7.5. Tuning. The requirement for tuning in the case of the C-AMG(1, 1) solver when applied
to the PV2 formulation must not be interpreted as a general requirement for solvers in the general
classification of classical AMG, or even for this particular solver when applied to other problems.
For example, no tuning was necessary for C-AMG(1) when applied to the SF4 formulation.

5. CONCLUSIONS

Two practical, AMG based, solution methods have been developed for incompressible fluid flow,
one for a second-order, discrete-difference formulation of the Navier–Stokes equations in primitive-
variables and one for a fourth-order, discrete-difference formulation in a single scalar-field variable.

For the second-order formulation, PV2, on both uniform and non-uniform unstructured meshes,
a smoothed-aggregation-based AMG solver provides solutions with an almost optimum mesh-
independent convergence. A GCR control harness is used to stabilize the smoothing and a mixed-
order interpolation is used to ensure good velocity–pressure coupling in the CGA.

For the fourth-order formulation, SF4, on uniform unstructured meshes, the classical AMG-based
solver (with a Jacobi-relaxed interpolation) provides solutions with convergence rates independent
of mesh bandwidth and at an overall cost that is only weakly mesh dependent. For non-uniform
meshes the convergence of this solver becomes mesh dependent, but the overall solution cost
increases relatively slowly with mesh bandwidth.
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